FOR BETTER HEALTH OUTCOMES

KEY POINTS

The combination of vitamin D and calcium is effective for non-vertebral fracture reduction.

- one fewer hip fracture per 1000 older adults per year in low risk patients.
- nine fewer hip fractures per 1000 older adults in high risk patients (eg. institutionalised, elderly, postmenopausal women).

- The combination of vitamin D plus calcium reduces falls more effectively than either calcium alone or placebo.

- Patients taking calcium supplements (without vitamin D) are unlikely to obtain benefit for bone health unless dietary calcium intake is very low.

- Vitamin D and calcium supplementation optimises the efficacy of other osteoporosis prevention strategies such as bisphosphonates, denosumab and raloxifene.

- Types of vitamin D available:
 - Calcitriol (active form of vitamin D) also known as 1,25-dihydroxycolecalciferol and 1,25-dihydroxyvitamin D3
 - Colecalciferol (vitamin D3)
 - Ergocalciferol (vitamin D2)

CONTEXT

This guide considers the use of vitamin D and calcium to prevent and treat osteoporosis.

RECOMMENDED DEPRESCRIBING STRATEGY

1. Assess the patient for risk of falls. Patients who are low falls risk (especially those that are immobile) are unlikely to obtain significant benefit in terms of falls risk or fracture risk from vitamin D and calcium supplementation and cessation should be considered.

2. Assess the patient’s dietary intake of calcium. Postmenopausal patients taking calcium (without vitamin D) who have an adequate dietary intake of calcium should be considered for calcium cessation.

3. Patients taking vitamin D (without calcium) to prevent fractures or falls should be considered for either the addition of calcium to their regimen, or cessation of the vitamin D if their fracture/falls risk is low.

4. Patients taking vitamin D (without calcium) for indications other than fracture or falls risk reduction should be considered for cessation.

5. Vitamin D and calcium treatment can usually be ceased without the need for tapering.

EFFICACY

FRACTURE RISK REDUCTION

CALCIUM WITHOUT VITAMIN D

The Auckland calcium study was a 5-year randomised controlled trial of 1 g/day calcium citrate in 1,471 postmenopausal women. Calcium did not reduce total, vertebral or forearm fracture incidence, nor did it decrease hip fracture incidence even though it had some beneficial effects on bone mineral density (BMD).1 Other studies have failed to demonstrate the effects of calcium alone [26] for the prevention of fractures.2

VITAMIN D WITH/WITHOUT CALCIUM

A recent Cochrane systematic review of vitamin D and vitamin D analogues for fracture prevention included 31 trials, with sample sizes ranging from 70 to 36,282 participants. The trials examined vitamin D (including 25-hydroxy vitamin D) with or without calcium in the prevention of fractures in community, nursing home or hospital inpatient populations. Of these 31 trials, 12 had participants with a mean or median age of 80 years or over.3 The authors made two key conclusions. Firstly, vitamin D alone did not change fracture risk. ‘There is high quality evidence that vitamin D alone, in the formats and doses tested, is unlikely to be effective in preventing hip fracture [11 trials, 27,693 participants: risk ratio (RR) 1.12, 95% confidence
Table 1: Effect of Vitamin D on risk of falls, subgroup analysis from Murad et al.5

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>OR (95% CI)</th>
<th>No. of Studies</th>
<th>P (Interaction Text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population’s dwelling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community dwelling</td>
<td>0.80 (0.69-0.93)</td>
<td>16</td>
<td>0.51</td>
</tr>
<tr>
<td>Institutionalized</td>
<td>0.87 (0.71-1.07)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Administration route</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intramuscular</td>
<td>0.52 (0.27-1.01)</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>Oral</td>
<td>0.85 (0.76-0.95)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Vitamin D deficiency status</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Not deficient</td>
<td>0.90 (0.81-0.99)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Deficient</td>
<td>0.53 (0.39-0.72)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Documented increase in serum 25(OH) D level</td>
<td></td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>Yes</td>
<td>0.82 (0.70-0.96)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>No/NR</td>
<td>0.84 (0.72-0.98)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vitamin D2 vs. D3</td>
<td></td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>D2</td>
<td>0.79 (0.65-0.97)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>0.85 (0.74-0.97)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Adherence >80%</td>
<td></td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>Yes</td>
<td>0.81 (0.69-0.94)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.87 (0.75-0.99)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Vitamin D dose</td>
<td></td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>High dose</td>
<td>0.82 (0.75-0.93)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Low dose</td>
<td>1.0 (0.72-1.37)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Calcium coadministration status</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Vitamin D + calcium vs. placebo</td>
<td>0.83 (0.72-0.95)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vitamin D vs. placebo</td>
<td>0.97 (0.84-1.11)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vitamin D + calcium vs. placebo</td>
<td>0.63 (0.50-0.81)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Study Quality</td>
<td></td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>High</td>
<td>0.82 (0.72-0.93)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.87 (0.72-1.05)</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

*High dose is defined as greater than 800IU/d, changing the definition of high dose to at least 800 IU/d changes P value for interaction test to 0.85 and 0.92, respectively.

Table 1: Effect of Vitamin D on risk of falls, subgroup analysis from Murad et al.6

REDUCTION OF FALLS

An investigation of the benefit of vitamin D supplementation in relation to vitamin D serum levels has been undertaken. These authors reviewed multiple observational and randomised controlled studies and collated the data for serum level of vitamin D and faller status. There was an association between hypovitaminosis D (regardless of the definition used) and incidence of falls in older persons. This association remained significant after adjustment for a number of potential confounders including age, gender, body mass index, comorbidities, polypharmacy, depression, cognitive decline, muscular strength and visual acuity.

A meta-analysis of 26 randomised controlled trials of vitamin D against a control showed that overall, vitamin D supplementation was associated with a reduction in the risk of falls (Odds Ratio 0.86 [95% CI 0.77-0.96]). As there was substantial heterogeneity between studies, subgroup analysis was performed. The results of the analyses are shown in Table 1. As can be seen, the benefit of vitamin D supplementation was only evident when the oral dose was above 800IU daily and when given in combination with calcium supplements. The majority of the studies reviewed included elderly women and the magnitude of the effects was of the order of a 15% reduction in risk of suffering at least one fall.6

The benefit of vitamin D seemed greater (see Table 1) in patients that had established vitamin D deficiency.

OTHER INDICATIONS

Vitamin D has been studied extensively in relation to multiple health outcomes. In 2014, authors from Edinburgh sought to undertake an umbrella review of all systematic reviews, meta-analyses, observational studies and randomised trials undertaken with vitamin D. They found 107 systematic reviews, 74 meta-analyses of observational studies, and 87 meta-analyses of randomised trials. The outcomes covered a range of skeletal, malignant, cardiovascular, autoimmune, infectious, metabolic and other diseases.

Of these 137 outcomes, the authors identified four with a probable association with vitamin D concentrations, being:

- Increased risk of low birth weight
- Supplementation of vitamin D is probably linked to a decrease in dental caries in children
- Maternal vitamin D concentrations at birth
- Increased parathyroid hormone concentrations in patients with chronic kidney disease requiring dialysis

Their major conclusion was “Despite a few hundred systematic reviews and meta-analyses, highly convincing evidence of a clear role of vitamin D does not exist for any outcome, but associations with a selection of outcomes are probable”.1
CALCIUM

Concern has been raised about the possibility of an increased incidence of myocardial infarction and stroke in patients taking supplemental calcium. Multiple meta-analyses and randomised trials have been published and these were recently summarised by Reid et al. They identified that the increased risk of myocardial infarction seemed to occur within a year of commencing treatment, whereas the increased risk of stroke took three to four years to become apparent. The magnitude of the elevated risk for myocardial infarction was ~30% and for stroke was ~20%. These relative increases translate to absolute increases of ~6 per 1000 patient years (NNH 166).

Not all systematic reviews, however, come to the same conclusion regarding risks of calcium. A review of 17 studies found no significant increase in incidence of myocardial infarction, and a meta-analysis published in 2015 concluded: "current evidence does not support the hypothesis that calcium supplementation with or without vitamin D increases coronary heart disease or all cause mortality risk in elderly women." It should be noted that these analyses are all based on studies where the trial was not designed to assess cardiovascular outcomes. These meta-analyses represent post-hoc analyses of secondary or unplanned outcomes, that could possibly be inadequately reported. Of importance, trials of vitamin D alone do not suggest any cardiovascular harm. Calcium supplementation may be associated with a range of other adverse effects. Up to 10% of patients report one or more of abdominal pain, anorexia, constipation, flatulence, hyperacidity, nausea, vomiting or xerostomia.

Occasional endocrine and metabolic effects (hypercalcemia and/or hypophosphatemia) have been reported. There is debate about whether calcium supplementation increases the risk of myocardial infarction, if there is an effect it is likely to be small.

VITAMIN D

Safety of vitamin D was assessed in a Cochrane review of 31 studies. They found no increase in mortality, but moderate increases in the following adverse events.

- Hypercalcaemia
 74/8526 (0.867%) vs 35/8598 (0.407%); RRI 2.28 [1.57, 3.31]; ARI 0.46% (NNH=217)

- Gastrointestinal adverse effects
 4023/24034 (16.74%) vs 3833/23727 (16.15%); 1.04 [1.00, 1.08]; ARI 0.58% (NNH- 172)

- Renal Calculi or renal insufficiency
 461/23244 (1.98%) vs 395/23304 (1.69%); RRI 1.16 [1.02, 1.33]; ARI 0.29% (NNH=345)

Currently, there is no evidence for the benefit of vitamin D supplementation alone for any health outcome.

FACTORS TO CONSIDER BEFORE DEPRESCRIBING

IN FAVOUR OF DEPRESCRIBING

- Patients with a low risk of falls are unlikely to achieve a significant benefit in terms of reduction of fall frequency from vitamin D and calcium supplementation.

- It is unclear whether a low vitamin D level alone is an indication for supplementation.

AGAINST DEPRESCRIBING

- Severe vitamin D deficiency may contribute to osteomalacia and calcium/vitamin D supplementation was a component of the majority of studies of osteoporosis treatment regimens (eg. bisphosphonates, raloxifene, denusomab). If patients are receiving active osteoporosis treatment, then calcium and vitamin D supplementation is likely to be required.

- Very low levels of vitamin D are associated with significant bone metabolic changes and appropriate replacement and supplementation may be continued.
REFERENCES

